Research projects finished

Gene correction to treat mitochondrial associated diseases

Duración

2 años

Presupuesto

$100,000 por año

Financiador

Lorem ipsum

Objetivo

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras non luctus dui. Ut molestie fringilla eleifend.

Resultados

Integer ultrices pharetra nulla ac interdum. Vivamus vel mauris non risus tincidunt molestie. Ut commodo ligula at diam euismod, at egestas erat pretium. Donec nec enim rhoncus, gravida leo varius.

Introducción:

Las mitocondrias son organelas fundamentales de la célula encargadas de la producción de energía, entre otras funciones. Ellas son las responsables de producir la mayoría de la energía necesaria para garantizar el funcionamiento del organismo. Por lo tanto, cuando las mitocondrias fallan, como es el caso de las enfermedades mitocondriales, las células no son capaces de generar energía suficiente y mueren. Esto conduce al mal funcionamiento de los órganos que tienen mayores requerimientos energéticos como el corazón, el cerebro y los músculos. A pesar de décadas investigando este tipo de enfermedades, todavía no se han establecido tratamientos apropiados para tratarlas.


Mitochondrial proteins are encoded by both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Mitochondria have their own translation system to synthesize mtDNA-encoded proteins essential for mtDNA replication, transcription, translation, and assembly of the oxidative phosphorylation system complexes.

Mutations in either the nDNA or mtDNA as well as defects in the translation machinery can cause protein abnormalities that result in mitochondrial disease. Recent studies have identified homozygous mutations in the gfm1 gene, which encodes for the mitochondrial translation factor EFG1, in mitochondrial disease patients. EFG1 catalyzes the translocation of peptidyl tRNA from the ribosomal acceptor aminoacyl site to the peptidyl site following peptide bond formation, with the concomitant removal of the deacylated tRNA, advancement of the mRNA by one codon and exposure of the next codon. Thus, mutations in EFG1 may cause a deficiency in mitochondrial translation and function, thereby resulting in mitochondrial disease. Recent advances in genome editing technologies provide the possibility to target and correct the underlying genetic mutation in monogenic diseases, such as this one.

These technologies do have limitations in that they have semi-random integration of the vectors, incomplete control over transgene copy number and expression level, a risk of insertional mutagenesis, as well as low efficiency. Recently, we have developed a gene editing strategy termed Homology-Independent Targeted Insertion (HITI) that is based on the CRISPR/Cas9 system, which harnesses elements of the NHEJ pathway to achieve efficient targeted knock-in in both proliferating and non-dividing cells. Our HITI method can specifically target the genetic locus associated with the disease with minimal insertion/deletion frequency. In addition, our HITI technology can be applied to gene correction in postmitotic cells in vivo.

Execution: 100%

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies